High throughput screening and identification of coagulopathic snake venom proteins and peptides using nanofractionation and proteomics approaches

Author:

Slagboom Julien,Mladić Marija,Xie Chunfang,Vonk Freek,Somsen Govert W.,Casewell Nicholas R.,Kool JeroenORCID

Abstract

AbstractSnakebite is a neglected tropical disease that results in a variety of systemic and local pathologies in envenomed victims and is responsible for around 138,000 deaths every year. Many snake venoms cause severe coagulopathy that makes victims vulnerable to suffering life-threating haemorrhage. The mechanisms of action of coagulopathic snake venom toxins are diverse and can result in both anticoagulant and procoagulant effects. However, because snake venoms consist of a mixture of numerous protein and peptide components, high throughput characterizations of specific target bioactives is challenging. In this study, we applied a combination of analytical and pharmacological methods to identify snake venom toxins from a wide diversity of snake species that perturb coagulation. To do so, we used a high-throughput screening approach consisting of a miniaturised plasma coagulation assay in combination with a venom nanofractionation approach. Twenty snake venoms were first separated using reversed-phase liquid chromatography, and a post-column split allowed a small fraction to be analyzed with mass spectrometry, while the larger fraction was collected and dispensed onto 384-well plates before direct analysis using a plasma coagulation assay. Our results demonstrate that many snake venoms simultaneously contain both procoagulant and anticoagulant bioactives that contribute to coagulopathy. In-depth identification analysis from seven medically-important venoms, via mass spectrometry and nanoLC-MS/MS, revealed that phospholipase A2toxins are frequently identified in anticoagulant venom fractions, while serine protease and metalloproteinase toxins are often associated with procoagulant bioactivities. The nanofractionation and proteomics approach applied herein seems likely to be a valuable tool for the rational development of next-generation snakebite treatments by facilitating the rapid identification and fractionation of coagulopathic toxins, thereby enabling specific targeting of these toxins by new therapeutics such as monoclonal antibodies and small molecule inhibitors.Author summarySnakebite is a neglected tropical disease that results in more than 100,000 deaths every year. Haemotoxicity is one of the most common signs of systemic envenoming observed after snakebite, and many snake venoms cause severe impairment of the blood coagulation that makes victims vulnerable to suffering life-threating hemorrhage. In this study, we applied a combination of analytical and pharmacological methods to identify snake venom toxins from a wide diversity of snake species that interfere with blood coagulation. Twenty snake venoms were screened for their effects on the blood coagulation cascade and based on the initial results and the medical relevance of the species, seven venoms were selected for in-depth analysis of the responsible toxins using advanced identification techniques. Our findings reveal a number of anticoagulant toxins that have not yet been reported before as such. The methodology described herein not only enables the identification of both known and unknown toxins that cause impairment of the blood coagulation, but offers a throughput platform to effectively screen for inhibitory molecules relevant for the development of next generation snakebite treatments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3