A qualitative model of the rod photoreceptor in natural context

Author:

Dubuc Timothée T.ORCID,Roesch Etienne B.ORCID

Abstract

AbstractGiven the intricacies of the retinal neural circuit, which bears a striking resemblance to that of the brain, it is proposed that retinal function goes beyond mere spatiotemporal prefiltering. We hypothesise that aspects related to motion detection and discrimination, anticipation and adaptation to environmental and contextual conditions, which have traditionally been ascribed to the brain, may be supported by neurons in the retina. Such early computations may be dependent on compensative and adaptive mechanisms that stem from qualities intrinsic to the retinal neural circuit and its interaction with the environment (neural transduction time, connectivity patterns, regularities in the input signal, temporal dynamics and light variations).With a view to investigating the contribution of the photoreceptor population to the processing performed by the retina in natural scotopic conditions, we present a continuous model of the rod photoreceptor. Our model permits the reproduction and exploration of a set of qualitative features displayed in vitro, such as excitation-dependent activation level and time-to-membrane current integration. We captured qualitative aspects of key features selected for their presumed importance in early visual function. Further, we subjected our model to extensive parameter sensitivity analyses, aiming to provide a visual representation of their contribution to the observed qualitative behavior.Author SummaryPrimate rod photoreceptor cells constitute the very first processing step in retinal function. This layer influences most of the visual field and presents itself as a tightly packed photosensitive array. Yet, no computational formulation of this neuron is suited for large-scale, time continuous modeling. With a view to studying retinal function in natural contexts, we describe a qualitative, continuous model of the rod. We subject this model to parameter analyses against selected behavioral features. We aim to provide a model that can integrate in further experiments, as well as in large scale network simulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3