Strain-Dependent Kinetic Properties of KIF3A and KIF3C Tune the Mechanochemistry of the KIF3AC Heterodimer

Author:

Bensel Brandon M.ORCID,Woody Michael S.ORCID,Pyrpassopoulos SerapionORCID,Goldman Yale E.ORCID,Gilbert Susan P.ORCID,Ostap E. MichaelORCID

Abstract

AbstractKIF3AC is a mammalian neuron-specific kinesin-2 implicated in intracellular cargo transport. It is a heterodimer of KIF3A and KIF3C motor polypeptides which have distinct biochemical and motile properties as engineered homodimers. Single-molecule motility assays show that KIF3AC moves processively along microtubules at a rate faster than expected given the motility rates of the KIF3AA and much slower KIF3CC homodimers. To resolve the stepping kinetics of KIF3A and KIF3C motors in homo-and heterodimeric constructs, and to determine their transport potential under mechanical load, we assayed motor activity using interferometric scattering (iSCAT) microscopy and optical trapping. The distribution of stepping durations of KIF3AC molecules is described by a rate (k1 = 11 s−1) without apparent kinetic asymmetry in stepping. Asymmetry was also not apparent under hindering or assisting mechanical loads of 1 pN in the optical trap. KIF3AC shows increased force sensitivity relative to KIF3AA, yet is more capable of stepping against mechanical load than KIF3CC. Microtubule gliding assays containing 1:1 mixtures of KIF3AA and KIF3CC result in speeds similar to KIF3AC, indicating the homodimers mechanically impact each other’s motility to reproduce the behavior of the heterodimer. We conclude that the stepping of KIF3C can be activated by KIF3A in a strain-dependent manner which is similar to application of an assisting load, and the behavior of KIF3C mirrors prior studies of kinesins with increased interhead compliance. These results suggest that KIF3AC-based cargo transport likely requires multiple motors, and its mechanochemical properties arise due to the strain-dependences of KIF3A and KIF3C.Significance StatementKinesins are important long-range intracellular transporters in neurons required by the extended length of the axon and dendrites and selective cargo transport to each. The mammalian kinesin-2, KIF3AC, is a neuronal heterodimer of fast and slow motor polypeptides. Our results show that KIF3AC has a single observed stepping rate in the presence and absence of load and detaches from the microtubule rapidly under load. Interestingly, both KIF3A and assisting loads accelerate the kinetics of KIF3C. These results suggest that KIF3AC is an unconventional cargo transporter and its motile properties do not represent a combination of alternating fast and slow step kinetics. We demonstrate that the motile properties of KIF3AC represent a mechanochemistry that is specific to KIF3AC and may provide functional advantages in neurons.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3