The Validity of the Coalescent Approximation for Large Samples

Author:

Melfi Andrew,Viswanath Divakar

Abstract

AbstractThe Kingman coalescent, widely used in genetics, is known to be a good approximation when the sample size is small relative to the population size. In this article, we investigate how large the sample size can get without violating the coalescent approximation. If the haploid population size is 2N, we prove that for samples of size N1/3−ϵ, ϵ > 0, coalescence under the Wright-Fisher (WF) model converges in probability to the Kingman coalescent in the limit of large N. For samples of size N2/5−ϵ or smaller, the WF coalescent converges to a mixture of the Kingman coalescent and what we call the mod-2 coalescent. For samples of size N1/2 or larger, triple collisions in the WF genealogy of the sample become important. The sample size for which the probability of conformance with the Kingman coalescent is 95% is found to be 1.47 × N0.31 for N ∈ [103, 105], showing the pertinence of the asymptotic theory. The probability of no triple collisions is found to be 95% for sample sizes equal to 0.92 × N0.49, which too is in accord with the asymptotic theory.Varying population sizes are handled using algorithms that calculate the probability of WF coalescence agreeing with the Kingman model or taking place without triple collisions. For a sample of size 100, the probabilities of coalescence according to the Kingman model are 2%, 0%, 1%, and 0% in four models of human population with constant N, constant N except for two bottlenecks, recent exponential growth, and increasing recent exponential growth, respectively. For the same four demographic models and the same sample size, the probabilities of coalescence with no triple collision are 92%, 73%, 88%, and 87%, respectively. Visualizations of the algorithm show that even distant bottlenecks can impede agreement between the coalescent and the WF model.Finally, we prove that the WF sample frequency spectrum for samples of size N1/3−ϵ or smaller converges to the classical answer for the coalescent.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3