Abstract
AbstractWe have previously generated four replicate populations of ionizing radiation (IR)- resistantEscherichia colithough directed evolution. Sequencing of isolates from these populations revealed that mutations affecting DNA repair (through DNA double-strand break repair and replication restart), ROS amelioration, and cell wall metabolism were prominent. Three mutations involved in DNA repair explained the IR resistance phenotype in one population, and similar DNA repair mutations were prominent in two others. The remaining population, IR-3-20, had no mutations in the key DNA repair proteins, suggesting that it had taken a different evolutionary path to IR resistance. Here, we present evidence that a variant of the anaerobic metabolism transcription factor FNR isolated from population IR-3-20 can play a role in IR resistance. An FNR variant is unique to IR-3-20 and suggests a role for altered global metabolism through the FNR regulon as a means for experimentally-evolved IR resistance.
Publisher
Cold Spring Harbor Laboratory