Long-range order from local interactions: organization and development of distributed cortical networks

Author:

Smith Gordon B.,Hein Bettina,Whitney David E.,Fitzpatrick David,Kaschube Matthias

Abstract

The cortical networks that underlie behavior exhibit an orderly functional organization at local and global scales, which is readily evident in the visual cortex of carnivores and primates1-6. Here, neighboring columns of neurons represent the full range of stimulus orientations and contribute to distributed networks spanning several millimeters2,7-11. However, the principles governing functional interactions that bridge this fine-scale functional architecture and distant network elements are unclear, and the emergence of these network interactions during development remains unexplored. Here, by using in vivo wide-field and 2-photon calcium imaging of spontaneous activity patterns in mature ferret visual cortex, we find widespread and specific modular correlation patterns that accurately predict the local structure of visually-evoked orientation columns from the spontaneous activity of neurons that lie several millimeters away. The large-scale networks revealed by correlated spontaneous activity show abrupt ‘fractures’ in continuity that are in tight register with evoked orientation pinwheels. Chronic in vivo imaging demonstrates that these large-scale modular correlation patterns and fractures are already present at early stages of cortical development and predictive of the mature network structure. Silencing feed-forward drive through either retinal or thalamic blockade does not affect network structure suggesting a cortical origin for this large-scale correlated activity, despite the immaturity of long-range horizontal network connections in the early cortex. Using a circuit model containing only local connections, we demonstrate that such a circuit is sufficient to generate large-scale correlated activity, while also producing correlated networks showing strong fractures, a reduced dimensionality, and an elongated local correlation structure, all in close agreement with our empirical data. These results demonstrate the precise local and global organization of cortical networks revealed through correlated spontaneous activity and suggest that local connections in early cortical circuits may generate structured long-range network correlations that underlie the subsequent formation of visually-evoked distributed functional networks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3