Predictive model in the presence of missing data: the centroid criterion for variable selection

Author:

Gaudart JeanORCID,Adalian PascalORCID,Leonetti George

Abstract

AbstractIntroductionIn many studies, covariates are not always fully observed because of missing data process. Usually, subjects with missing data are excluded from the analysis but the number of covariates can be greater than the size of the sample when the number of removed subjects is high. Subjective selection or imputation procedures are used but this leads to biased or powerless models.The aim of our study was to develop a method based on the selection of the nearest covariate to the centroid of a homogeneous cluster of covariates. We applied this method to a forensic medicine data set to estimate the age of aborted fetuses.AnalysisMethodsWe measured 46 biometric covariates on 50 aborted fetuses. But the covariates were complete for only 18 fetuses.First, to obtain homogeneous clusters of covariates we used a hierarchical cluster analysis.Second, for each obtained cluster we selected the nearest covariate to the centroid of the cluster, maximizing the sum of correlations (the centroid criterion).Third, with the covariate selected this way, the sample size was sufficient to compute a classical linear regression model.We have shown the almost sure convergence of the centroid criterion and simulations were performed to build its empirical distribution.We compared our method to a subjective deletion method, two simple imputation methods and to the multiple imputation method.ResultsThe hierarchical cluster analysis built 2 clusters of covariates and 6 remaining covariates. After the selection of the nearest covariate to the centroid of each cluster, we computed a stepwise linear regression model. The model was adequate (R2=90.02%) and the cross-validation showed low prediction errors (2.23 10−3).The empirical distribution of the criterion provided empirical mean (31.91) and median (32.07) close to the theoretical value (32.03).The comparisons showed that deletion and simple imputation methods provided models of inferior quality than the multiple imputation method and the centroid method.ConclusionWhen the number of continuous covariates is greater than the sample size because of missing process, the usual procedures are biased. Our selection procedure based on the centroid criterion is a valid alternative to compose a set of predictors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3