When one phenotype is not enough – divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species

Author:

Zancolli GiuliaORCID,Calvete Juan J.,Cardwell Michael D.,Greene Harry W.,Hayes William K.,Hegarty Matthew J.,Herrmann Hans-Werner,Holycross Andrew T.,Lannutti Dominic I.,Mulley John F.,Sanz Libia,Travis Zachary D.,Whorley Joshua R.,Wüster Catharine E.,Wüster Wolfgang

Abstract

SUMMARYUnderstanding the relationship between genome, phenotypic variation, and the ecological pressures that act to maintain that variation, represents a fundamental challenge in evolutionary biology. Functional polymorphisms typically segregate in spatially isolated populations [1, 2] and/or discrete ecological conditions [3-5], whereas dissecting the evolutionary processes involved in adaptive geographic variation across a continuous spatial distribution is much more challenging [6]. Additionally, pleiotropic interactions between genes and phenotype often complicate the identification of specific genotype-phenotype links [7-8], and thus of the selective pressures acting on them. Animal venoms are ideal systems to overcome these constraints: they are complex and variable, yet easily quantifiable molecular phenotypes with a clear function and a direct link to both genome and fitness [9]. Here, we use dense and widespread population-level sampling of the Mohave rattlesnake, Crotalus scutulatus, and show that genomic structural variation at multiple loci underlies extreme geographic variation in venom composition, which is maintained despite extensive gene flow. Unexpectedly, selection for diet does not explain venom variation, contrary to the dominant paradigm of venom evolution, and neither does neutral population structure caused by past vicariance. Instead, different toxin genes correlate with distinct environmental factors, suggesting that divergent selective pressures can act on individual loci independently of their genomic proximity or co-expression patterns. Local-scale spatial heterogeneity thus appears to maintain a remarkably ancient complex of molecular phenotypes, which have been retained in populations that diverged more than 1.5-2 MYA, representing an exceptional case of long-term structural polymorphism. These results emphasize how the interplay between genomic architecture and spatial heterogeneity in selective pressures may facilitate the retention of functional polymorphisms of an adaptive phenotype.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3