Accurate and Complete Genomes from Metagenomes

Author:

Chen Lin-XingORCID,Anantharaman KarthikORCID,Shaiber Alon,Eren A. MuratORCID,Banfield Jillian F.ORCID

Abstract

AbstractGenomes are an integral component of the biological information about an organism and, logically, the more complete the genome, the more informative it is. Historically, bacterial and archaeal genomes were reconstructed from pure (monoclonal) cultures and the first reported sequences were manually curated to completion. However, the bottleneck imposed by the requirement for isolates precluded genomic insights for the vast majority of microbial life. Shotgun sequencing of microbial communities, referred to initially as community genomics and subsequently as genome-resolved metagenomics, can circumvent this limitation by obtaining metagenome-assembled genomes (MAGs), but gaps, local assembly errors, chimeras and contamination by fragments from other genomes limit the value of these genomes. Here, we discuss genome curation to improve and in some cases achieve complete (circularized, no gaps) MAGs (CMAGs). To date, few CMAGs have been generated, although notably some are from very complex systems such as soil and sediment. Through analysis of ~7000 published complete bacterial isolate genomes, we verify the value of cumulative GC skew in combination with other metrics to establish bacterial genome sequence accuracy. Interestingly, analysis of cumulative GC skew identified potential mis-assemblies in some reference genomes of isolated bacteria and the repeat sequences that likely gave rise to them. We discuss methods that could be implemented in bioinformatic approaches for curation to ensure that metabolic and evolutionary analyses can be based on very high-quality genomes.

Publisher

Cold Spring Harbor Laboratory

Reference135 articles.

1. Lack of Evidence for Plague or Anthrax on the New York City Subway;Cell Syst,2015

2. Geospatial Resolution of Human and Bacterial Diversity with City-Scale Metagenomics;Cell Syst,2015

3. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes

4. Alneberg J , Bjarnason BS , de Bruijn I , Schirmer M , Quick J , Ijaz UZ , Loman NJ , Andersson AF , Quince C . 2013. CONCOCT: Clustering cONtigs on COverage and ComposiTion. arXiv [q-bioGN]. http://arxiv.org/abs/1312.4038.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3