Author:
Long Xiaoyang,Zhang Sheng-Jia
Abstract
AbstractSpatially selective firing in the forms of place cells, grid cells, boundary vector/border cells and head direction cells are the basic building blocks of a canonical spatial navigation system centered on the hippocampal-entorhinal complex. While head direction cells can be found throughout the brain, spatial tuning outside the hippocampal formation are often non-specific or conjunctive to other representations such as a reward. Although the precise mechanism of spatially selective activities is not understood, various studies show sensory inputs (particularly vision) heavily modulate spatial representation in the hippocampal-entorhinal circuit. To better understand the contribution from other sensory inputs in shaping spatial representation in the brain, we recorded from the primary somatosensory cortex in foraging rats. To our surprise, we were able to identify the full complement of spatial activity patterns reported in the hippocampal-entorhinal network, namely, place cells, head direction cells, boundary vector/border cells, grid cells and conjunctive cells. These newly identified somatosensory spatial cell types form a spatial map outside the hippocampal formation and support the hypothesis that location information is necessary for body representation in the somatosensory cortex, and may be analogous to spatially tuned representations in the motor cortex relating to the movement of body parts. Our findings are transformative in our understanding of how spatial information is used and utilized in the brain, as well as functional operations of the somatosensory cortex in the context of rehabilitation with brain-machine interfaces.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献