Transcription factor motifs associated with anterior insula gene-expression underlying mood disorder phenotypes

Author:

Arasappan Dhivya,Eickhoff Simon B.,Nemeroff Charles B,Hofmann Hans A.ORCID,Jabbi Mbemba

Abstract

ABSTRACTBackgroundMood disorders represent a major cause of morbidity and mortality worldwide but the brain-related molecular pathophysiology in mood disorders remains largely undefined.MethodsBecause the anterior insula is reduced in volume in patients with mood disorders, RNA was extracted from postmortem mood disorder samples and compared with unaffected control samples for RNA-sequencing identification of differentially expressed genes (DEGs) in a) bipolar disorder (BD; n=37) versus (vs.) controls (n=33), and b) major depressive disorder (MDD n=30) vs controls, and c) low vs. high Axis-I comorbidity (a measure of cumulative psychiatric disease burden). Given the regulatory role of transcription factors (TFs) in gene expression via specific-DNA-binding domains (motifs), we used JASPAR TF binding database to identify TF-motifs.ResultsWe found that DEGs in BD vs. controls, MDD vs. controls, and high vs. low Axis-I comorbidity were associated with TF-motifs that are known to regulate expression of toll-like receptor genes, cellular homeostatic-control genes, and genes involved in embryonic, cellular/organ and brain development.DiscussionRobust imaging-guided transcriptomics (i.e., using meta-analytic imaging results to guide independent post-mortem dissection for RNA-sequencing) was applied by targeting the gray matter volume reduction in the anterior insula in mood disorders, to guide independent postmortem identification of TF motifs regulating DEG. TF motifs were identified for immune, cellular, embryonic and neurodevelopmental processes.ConclusionOur findings of TF-motifs that regulate the expression of immune, cellular homeostatic-control, and developmental genes provides novel information about the hierarchical relationship between gene regulatory networks, the TFs that control them, and proximate underlying neuroanatomical phenotypes in mood disorders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3