The C. elegans CHP1 homolog, pbo-1, functions in innate immunity by regulating the pH of the intestinal lumen

Author:

Benomar SaidaORCID,Bender Aaron,Peterson Blake R.ORCID,Chandler Josephine R.ORCID,Ackley Brian D.ORCID

Abstract

AbstractCaenorhabditis elegans are soil-dwelling nematodes and models for understanding innate immunity and infection. Previous work has described a regularly-timed pH change in the intestine of Caenorhabditis elegans called the pH wave. To characterize this wave and its function in the worm, we developed a novel fluorescent dye (KR35) that accumulates in the intestine and sensitively responds to dynamic changes in pH. Here, we use KR35 to show that mutations in the Ca2+-binding protein, PBO-1 abrogate the pH wave, causing the anterior intestine to be constantly acidic. Surprisingly, pbo-1 mutants were also more susceptible to infection by several bacterial pathogens. We could suppress pathogen susceptibility in pbo-1 mutants by treating the animals with pH-buffering bicarbonate, suggesting the pathogen susceptibility is a function of the acidity of the intestinal pH. Furthermore, we use KR35 to show that pathogens completely neutralize the pH in the intestine of wild type, but not pbo-1 mutants. C. elegans is known to increase production of reactive oxygen species (ROS), such as H2O2, in response to pathogens, which is an important component of pathogen defense. We show that pbo-1 mutants exhibited decreased H2O2 in response to pathogens, which could also be partially restored in pbo-1 animals treated with bicarbonate. Ultimately, our results support a model whereby pbo-1 functions during infection to permit pH changes in the intestine that are important for fighting pathogens.Author SummaryInnate immunity is critical for host defense against pathogens. However, questions remain about how the host senses and responds to pathogen invasion. Using a pH-sensitive fluorescent dye and a Caenorhabditis elegans pathogen infection model we show that pathogens induce changes in pH of the worm intestine. We also show that intestinal pH directly affects production of reactive oxygen species (e.g. H2O2) important for pathogen defense. Our results show that pH regulation is an important component of the innate immune response to pathogens.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3