The Cyclic AMP Receptor Protein Regulates Quorum Sensing and Global Gene Expression in Yersinia pestis During Planktonic Growth and Growth in Biofilms

Author:

Ritzert Jeremy T.,Minasov George,Embry Ryan,Schipma Matthew J.,Satchell Karla J. F.ORCID

Abstract

ABSTRACTCyclic adenosine monophosphate (cAMP) receptor protein (Crp) is an important transcriptional regulator of Yersinia pestis. Expression of crp increases during pneumonic plague as the pathogen depletes glucose and forms large biofilms within lungs. To better understand control of Y. pestis Crp, we determined a 1.8 Å crystal structure of the protein-cAMP complex. We found that compared to Escherichia coli Crp, C helix amino acid substitutions in Y. pestis Crp did not impact cAMP dependency of Crp to bind DNA promoters. To investigate Y. pestis Crp-regulated genes during plague pneumonia, we performed RNA-sequencing on both wild-type and Δcrp mutant bacteria growing in planktonic and biofilm states in minimal media with glucose or glycerol. Y. pestis Crp is found to dramatically alter expression of hundreds of genes dependent upon carbon source and growth state. Gel shift assays confirmed direct regulation of the malT and ptsG promoters and Crp was then linked to Y. pestis growth on maltose as a sole carbon source. Iron-regulation genes ybtA and fyuA were found to be indirectly regulated by Crp. A new connection between carbon source and quorum sensing was revealed as Crp was found to regulate production of acyl-homoserine lactones (AHLs) through direct and indirect regulation of genes for AHL synthetases and receptors. AHLs were subsequently identified in the lungs of Y. pestis infected mice when crp expression is highest in Y. pestis biofilms. Thus, in addition to well-studied pla, other Crp-regulated genes likely have important functions during plague infection.IMPORTANCEBacterial pathogens have evolved extensive signaling pathways to translate environmental signals into changes in gene expression. While Crp has long been appreciated for its role in regulating metabolism of carbon sources in many bacterial species, transcriptional profiling has revealed that this protein regulates many other aspects of bacterial physiology. The plague pathogen, Y. pestis, requires this global regulator to survive in blood, skin, and lungs. During disease progression, this organism adapts to changes within these niches. In addition to regulating genes for metabolism of non-glucose sugars, we find the Crp regulates genes for virulence, metal acquisition and quorum sensing by direct or indirect mechanisms. Thus, this single transcriptional regulator, that responds to changes in available carbon sources, can regulate multiple critical behaviors for causing disease.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

1. Yersinia pestis--etiologic agent of plague

2. Yersinia pestis Requires the 2-Component Regulatory System OmpR-EnvZ to Resist Innate Immunity During the Early and Late Stages of Plague

3. Quorum sensing and the lifestyle of Yersinia;Curr Issues Mol Biol,2006

4. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae;Front Cell Infect Microbiol,2014

5. Environmental Regulation of Yersinia Pathophysiology;Front Cell Infect Microbiol,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3