Engineering Nitrogen Fixation Activity in an Oxygenic Phototroph

Author:

Liu Deng,Liberton Michelle,Yu Jingjie,Pakrasi Himadri B.ORCID,Bhattacharyya-Pakrasi Maitrayee

Abstract

ABSTRACTBiological nitrogen fixation is catalyzed by nitrogenase, a complex metalloenzyme found only in prokaryotes. N2fixation is energetically highly expensive, and an energy generating process such as photosynthesis can meet the energy demand of N2fixation. However, synthesis and expression of nitrogenase is exquisitely sensitive to oxygen. Thus, engineering nitrogen fixation activity in photosynthetic organisms that produce oxygen is challenging. Cyanobacteria are oxygenic photosynthetic prokaryotes, and some of them also fix N2. Here, we demonstrate a feasible way to engineer nitrogenase activity in the non-diazotrophic cyanobacteriumSynechocystissp. PCC 6803 through the transfer of 35 nitrogen fixation (nif) genes from the diazotrophic cyanobacteriumCyanothecesp. ATCC 51142. In addition, we have identified the minimalnifcluster required for such activity inSynechocystis6803. Moreover, nitrogenase activity was significantly improved by increasing the expression levels ofnifgenes. Importantly, the O2tolerance of nitrogenase was enhanced by introduction of uptake hydrogenase genes, showing this to be a functional way to improve nitrogenase enzyme activity under micro-oxic conditions. To date, our efforts have resulted in engineeredSynechocystis6803 strains that remarkably have more than 30% N2-fixation activity compared to that inCyanothece51142, the highest such activity established in any non-diazotrophic oxygenic photosynthetic organism. This study establishes a baseline towards the ultimate goal of engineering nitrogen fixation ability in crop plants.IMPORTANCEApplication of chemically synthesized nitrogen fertilizers has revolutionized agriculture. However, the energetic costs of such production processes as well as the wide spread application of fertilizers have raised serious environmental issues. A sustainable alternative is to endow crop plants the ability to fix atmospheric N2in situ. One long-term approach is to transfer allnifgenes from a prokaryote to plant cells, and express nitrogenase in an energy-producing organelle, chloroplast or mitochondrion. In this context,Synechocystis6803, the non-diazotrophic cyanobacterium utilized in this study, provides a model chassis for rapid investigation of the necessary requirements to establish diazotrophy in an oxygenic phototroph.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3