Abstract
AbstractWe investigate the use of Twitter data to deliver signals for syndromic surveillance in order to assess its ability to augment existing syndromic surveillance efforts and give a better understanding of symptomatic people who do not seek health care advice directly. We focus on a specific syndrome - asthma/difficulty breathing. We outline data collection using the Twitter streaming API as well as analysis and pre-processing of the collected data. Even with keyword-based data collection, many of the tweets collected are not be relevant because they represent chatter, or talk of awareness instead of suffering a particular condition. In light of this, we set out to identify relevant tweets to collect a strong and reliable signal. For this, we investigate text classification techniques, and in particular we focus on semi-supervised classification techniques since they enable us to use more of the Twitter data collected without needing to label it all. In this paper, propose a semi-supervised approach to symptomatic tweet classification and relevance filtering. We also propose the use of emojis and other special features capturing the tweet’s tone to improve the classification performance. Our results show that negative emojis and those that denote laughter provide the best classification performance in conjunction with a simple bag of words approach. We obtain good performance on classifying symptomatic tweets with both supervised and semi-supervised algorithms and found that the proposed semi-supervised algorithms preserve more of the relevant tweets and may be advantegeous in the context of a weak signal. Finally, we found some correlation (r = 0.414, p = 0.0004) between the Twitter signal generated with the semi-supervised system and data from consultations for related health conditions.
Publisher
Cold Spring Harbor Laboratory
Reference48 articles.
1. World Health Organisation WHO. The world health report 2007 - A safer future: global public health security in the 21st century; 2007. Available at: http://www.who.int/whr/2007/en/.
2. Syndromic Surveillance: Adapting Innovations to Developing Settings
3. Assessment of syndromic surveillance in Europe;Lancet (London, England),2011
4. Achrekar H , Gandhe A , Lazarus R , Yu SH , Liu B . Twitter Improves Seasonal Influenza Prediction. In: Healthinf; 2012. p. 61–70.
5. Using social media for actionable disease surveillance and outbreak management: A systematic literature review;PloS one,2015