Inference of Adaptive Shifts for Multivariate Correlated Traits

Author:

Bastide Paul,Ané CécileORCID,Robin StéphaneORCID,Mariadassou MahendraORCID

Abstract

AbstractTo study the evolution of several quantitative traits, the classical phylogenetic comparative framework consists of a multivariate random process running along the branches of a phylogenetic tree. The Ornstein-Uhlenbeck (OU) process is sometimes preferred to the simple Brownian Motion (BM) as it models stabilizing selection toward an optimum. The optimum for each trait is likely to be changing over the long periods of time spanned by large modern phylogenies. Our goal is to automatically detect the position of these shifts on a phylogenetic tree, while accounting for correlations between traits, which might exist because of structural or evolutionary constraints. We show that, in the presence shifts, phylogenetic Principal Component Analysis (pPCA) fails to decorrelate traits efficiently, so that any method aiming at finding shift needs to deal with correlation simultaneously. We introduce here a simplification of the full multivariate OU model, named scalar OU (scOU), which allows for noncausal correlations and is still computationally tractable. We extend the equivalence between the OU and a BM on a re-scaled tree to our multivariate framework. We describe an Expectation Maximization algorithm that allows for a maximum likelihood estimation of the shift positions, associated with a new model selection criterion, accounting for the identifiability issues for the shift localization on the tree. The method, freely available as an R-package (PhylogeneticEM) is fast, and can deal with missing values. We demonstrate its efficiency and accuracy compared to another state-of-the-art method (ℓ1ou) on a wide range of simulated scenarios, and use this new framework to re-analyze recently gathered datasets on New World Monkeys and Anolis lizards.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3