Abstract
AbstractMetabolic interactions, such as cross-feeding, play a prominent role in microbial communitystructure. For example, they may underlie the ubiquity of uncultivated microorganisms. We investigated this phenomenon in the human oral microbiome, by analyzing microbial metabolic networks derived from sequenced genomes. Specifically, we devised a probabilistic biosynthetic network robustness metric that describes the chance that an organism could produce a given metabolite, and used it to assemble a comprehensive atlas of biosynthetic capabilities for 88 metabolites across 456 human oral microbiome strains. A cluster of organisms characterized by reduced biosynthetic capabilities stood out within this atlas. This cluster included several uncultivated taxa and three recently co-culturedSaccharibacteria(TM7) phylum species. Comparison across strains also allowed us to systematically identify specific putative metabolic interdependences between organisms. Our method, which provides a new way of converting annotated genomes into metabolic predictions, is easily extendible to other microbial communities and metabolic products.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献