Learning and generalization on asynchrony and order tasks at sound offset: Implications for underlying neural circuitry

Author:

Mossbridge Julia A.,Scissors Beth N.,Wright Beverly A.

Abstract

Normal auditory perception relies on accurate judgments about the temporal relationships between sounds. Previously, we used a perceptual-learning paradigm to investigate the neural substrates of two such relative-timing judgments made at sound onset: detecting stimulus asynchrony and discriminating stimulus order. Here, we conducted parallel experiments at sound offset. Human adults practiced ∼1 h/d for 6–8 d on either asynchrony detection or order discrimination at sound offset with tones at 0.25 and 4.0 kHz. As at sound onset, learning on order-offset discrimination did not generalize to the other task (asynchrony), an untrained temporal position (onset), or untrained frequency pairs, indicating that this training affected a quite specialized neural circuit. In contrast, learning on asynchrony-offset detection generalized to the other task (order) and temporal position (onset), though not to untrained frequency pairs, implying that the training on this condition influenced a less specialized, or more interdependent, circuit. Finally, the learning patterns induced by single-session exposure to asynchrony and order tasks differed depending on whether these tasks were performed primarily at sound onset or offset, suggesting that this exposure modified circuitry specialized to separately process relative-timing tasks at these two temporal positions. Overall, it appears that the neural processes underlying relative-timing judgments are malleable, and that the nature of the affected circuitry depends on the duration of exposure (multihour or single-session) and the parameters of the judgment(s) made during that exposure.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3