Conidial melanin of the human pathogenic fungusAspergillus fumigatusdisrupts cell autonomous defenses in amoebae

Author:

Ferling IuliiaORCID,Dunn Joe DanORCID,Ferling Alexander,Soldati ThierryORCID,Hillmann FalkORCID

Abstract

AbstractThe human pathogenic fungusAspergillus fumigatusis a ubiquitous saprophyte that causes fatal infections in immunocompromised individuals. Following inhalation, conidia are ingested by innate immune cells and can arrest phagolysosome maturation. How such general virulence traits could have been selected for in natural environments is unknown. Here, we used the model amoebaDictyostelium discoideumto follow the antagonistic interaction ofA. fumigatusconidia with environmental phagocytes in real time. We found that conidia covered with the green pigment 1,8-dihydroxynaphthalene-(DHN)-melanin were internalized at far lower rates when compared to those lacking the pigment, despite high rates of initial attachment. Immediately after uptake of the fungal conidia, nascent phagosomes were formed through sequential membrane fusion and fission events. Using single-cell assays supported by a computational model integrating the differential dynamics of internalization and phagolysosome maturation, we could show that acidification of phagolysosomes was transient and was followed by neutralization and, finally, exocytosis of the conidium. For unpigmented conidia, the cycle was completed in less than 1 h, while the process was delayed for conidia covered with DHN-melanin. At later stages of infection, damage to infected phagocytes triggered the ESCRT membrane repair machinery, whose recruitment was also attenuated by DHN-melanin, favoring prolonged persistence and the establishment of an intracellular germination niche in this environmental phagocyte. Increased exposure of DHN-melanin on the conidial surface also improved fungal survival when confronted with the fungivorous predatorProtostelium aurantium, demonstrating its universal antiphagocytic properties.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3