PI3K regulates intraepithelial cell positioning through Rho GTP-ases in the developing neural tube

Author:

Torroba Blanca,Herrera Antonio,Menendez Anghara,Pons SebastianORCID

Abstract

SUMMARY STATEMENTDuring neural tube development, PI3K pathway promotes cell survival and provides the apical-basal navigation clues that define the final location of neurons in the epithelium.SUMMARYPhosphatidylinositol 3-kinases (PI3Ks) are signal transducers of many biological processes. Class 1A PI3Ks are hetero dimers formed by a regulatory and a catalytic subunit. We have used the developing chicken neural tube (NT) to study the roles played by PI3K during the process of cell proliferation and differentiation. Notably, we have observed that in addition to its well characterized anti apoptotic activity, PI3K also plays a crucial role in intra epithelial cell positioning, and unlike its role in survival that mainly depends on AKT, the activity in cell positioning is mediated by Rho GTPase family members. Additionally, we have observed that activating mutations of PI3K that are remarkably frequent in many human cancers, cause an unrestrained basal migration of the neuroepithelial cells that end up breaking through the basal membrane invading the surrounding mesenchymal tissue. The mechanism described in this work contribute not only to acquire a greater knowledge of the intraepithelial cell positioning process, but also give new clues on how activating mutations of PI3K contribute to cell invasion during the first stages of tumour dissemination.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3