The joint evolution of lifespan and self-fertilisation

Author:

Lesaffre ThomasORCID,Billiard SylvainORCID

Abstract

ABSTRACTIn Angiosperms, there exists a strong association between mating system and lifespan. Most self-fertilising species are short-lived and most predominant or obligate outcrossers are long-lived. This association is generally explained by the influence of lifespan on the evolution of the mating system, considering lifespan as fixed. Yet, lifespan can itself evolve, and the mating system may as well influence the evolution of lifespan, as is suggested by joint evolutionary shifts of lifespan and mating system between sister species. In this paper, we build modifier models to study the joint evolution of self-fertilisation and lifespan, including both juvenile and adult inbreeding depression. We show that self-fertilisation is expected to promote evolution towards shorter lifespan, and that the range of conditions under which selfing can evolve rapidly shrinks as lifespan increases. We study the effects of inbreeding depression affecting various steps in the life cycle, and discuss how extrinsic mortality conditions are expected to affect evolutionary associations. In particular, we show that selfers may sometimes remain short-lived even in a very stable habitat, as a strategy to avoid the deleterious effects of inbreeding.

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

1. Perenniality induces high inbreeding depression in self-fertilising species;Theoretical Population Biology,2016

2. Meta-analysis on the association of population size and life history with inbreeding depression in plants

3. The correlated evolution of dispersal and mating-system traits;Evolutionary Biology,2012

4. The comparative biology of pollination and mating in flowering plants

5. Natural and sexual selection on many loci;Genetics,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution of selfing and lifespan 2.0;Peer Community In Evolutionary Biology;2019-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3