Abstract
AbstractWe present an automated model reduction algorithm that uses quasi-steady state approximation based reduction to minimize the error between the desired outputs. Additionally, the algorithm minimizes the sensitivity of the error with respect to parameters to ensure robust performance of the reduced model in the presence of parametric uncertainties. We develop the theory for this model reduction algorithm and present the implementation of the algorithm that can be used to perform model reduction of given SBML models. To demonstrate the utility of this algorithm, we consider the design of a synthetic biological circuit to control the population density and composition of a consortium consisting of two different cell strains. We show how the model reduction algorithm can be used to guide the design and analysis of this circuit.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献