Estimating abundance with interruptions in data collection using open population spatial capture-recapture models

Author:

Milleret CyrilORCID,Dupont Pierre,Chipperfield Joseph,Turek Daniel,Brøseth Henrik,Gimenez Olivier,de Valpine Perry,Bischof Richard

Abstract

AbstractThe estimation of population size remains one of the primary goals and challenges in ecology and provides a basis for debate and policy in wildlife management. Despite the development of efficient non-invasive sampling methods and robust statistical tools to estimate abundance, maintenance of field sampling is still subject to economic and logistic constraints. These can result in intentional or unintentional interruptions in sampling and cause gaps in data time series, posing a challenge to abundance estimation, and ultimately conservation and management decisions.We applied an open population spatial capture-recapture (OPSCR) model to simulations and a real case study to test the reliability of abundance inferences models to interruption in data collection. Using individual detections occurring over consecutive sampling occasions, OPSCR models allow the estimation of abundance from individual detection data while accounting for lack of demographic and geographic closure between occasions. First, we simulated sampling data with interruptions in field sampling of different lengths and timing. We checked the performance of an OPSCR model in deriving abundance for species with slow and intermediate life history strategies. Finally, we introduced artificial sampling interruptions of various magnitudes and timing to a five-year non-invasive monitoring data set of wolverines (Gulo gulo) in Norway and quantified the consequences for OPSCR model predictions.Inferences from OPSCR models were reliable even with temporal interruptions in monitoring. Interruption did not cause any systematic bias, but increased uncertainty. Interruptions occurring at occasions towards the beginning and the end of the sampling caused higher uncertainty. The loss in precision was more severe for species with a faster life history strategy.We provide a reliable framework to estimate abundance even in the presence of sampling interruptions. OPSCR allows monitoring studies to provide contiguous abundance estimates to managers, stakeholders, and policy makers even when data are non-contiguous. OPSCR models do not only help cope with unintentional interruptions during sampling but also offer opportunities for using intentional sampling interruptions during the design of cost-effective population surveys.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3