Plasmodium PIMMS43 is required for ookinete evasion of the mosquito complement-like response and sporogonic development in the oocyst

Author:

Ukegbu Chiamaka V.,Giorgalli Maria,Tapanelli Sofia,Rona Luisa D.P.,Jaye Amie,Wyer Claudia,Angrisano Fiona,Blagborough Andrew M.,Christophides George K.,Vlachou Dina

Abstract

AbstractMalaria transmission requires Plasmodium parasites to successfully infect a female Anopheles mosquito, surviving a series of robust innate immune responses. Understanding how parasites evade these responses can highlight new ways to block malaria transmission. We show that ookinete and sporozoite surface protein PIMMS43 is required for Plasmodium ookinete evasion of the Anopheles coluzzii complement-like system and for sporogonic development in the oocyst. Disruption of P. berghei PIMMS43 triggers robust complement activation and ookinete elimination upon mosquito midgut traversal. Silencing the complement-like system restores ookinete-to-oocyst transition. Antibodies that bind PIMMS43 interfere with parasite immune evasion when ingested with the infectious blood meal and significantly reduce the prevalence and intensity of infection. PIMMS43 genetic structure across African P. falciparum populations indicates allelic adaptation to sympatric vector populations. These data significantly add to our understanding of mosquito-parasite interactions and identify PIMMS43 as a target of interventions aiming at malaria transmission blocking.Author summaryMalaria is a devastating disease transmitted among humans through mosquito bites. Mosquito control has significantly reduced clinical malaria cases and deaths in the last decades. However, as mosquito resistance to insecticides is becoming widespread impacting on current control tools, such as insecticide impregnated bed nets and indoor spraying, new interventions are urgently needed, especially those that target disease transmission. Here, we characterize a protein found on the surface of malaria parasites, which serves to evade the mosquito immune system ensuring disease transmission. Neutralization of PIMMS43, either by eliminating it from the parasite genome or by pre-incubating parasites with antibodies that bind to the protein, is shown to inhibit mosquito infection by malaria parasites. Differences in PIMMS43 detected between malaria parasite populations sampled across Africa suggest that these populations have adapted for transmission by different mosquito vectors that are also differentially distributed across the continent. We conclude that interventions targeting PIMMS43 could block malaria parasites inside mosquitoes before they can infect humans.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3