ER stress and lipid imbalance drive embryonic cardiomyopathy in a human heart organoid model of pregestational diabetes

Author:

Kostina Aleksandra,Lewis-Israeli Yonatan R.,Abdelhamid Mishref,Gabalski Mitchell A.,Volmert Brett D.,Lankerd Haley,Huang Amanda R.,Wasserman Aaron H.,Lydic Todd,Chan Christina,Olomu Isoken,Aguirre AitorORCID

Abstract

ABSTRACTCongenital heart defects constitute the most common birth defect in humans, affecting approximately 1% of all live births. The incidence of congenital heart defects is exacerbated by maternal conditions, such as diabetes during the first trimester. Our ability to mechanistically understand these disorders is severely limited by the lack of human models and the inaccessibility to human tissue at relevant stages. Here, we used an advanced human heart organoid model that recapitulates complex aspects of heart development during the first trimester to model the effects of pregestational diabetes in the human embryonic heart. We observed that heart organoids in diabetic conditions develop pathophysiological hallmarks like those previously reported in mouse and human studies, including ROS-mediated stress and cardiomyocyte hypertrophy, among others. Single cell RNA-seq revealed cardiac cell type specific-dysfunction affecting epicardial and cardiomyocyte populations, and suggested alterations in endoplasmic reticulum function and very long chain fatty acid lipid metabolism. Confocal imaging and LC-MS lipidomics confirmed our observations and showed that dyslipidemia was mediated by fatty acid desaturase 2 (FADS2) mRNA decay dependent on IRE1-RIDD signaling. We also found that the effects of pregestational diabetes could be reversed to a significant extent using drug interventions targeting either IRE1 or restoring healthy lipid levels within organoids, opening the door to new preventative and therapeutic strategies in humans.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3