Analysis of RNA Exosome Subunit Transcript Abundance Across Tissues: Implications for Neurological Disease Pathogenesis

Author:

de Amorim Julia L.ORCID,Asafu-Adjaye DonORCID,Corbett Anita H.ORCID

Abstract

AbstractExosomopathies are a collection of rare diseases caused by mutations in genes that encode structural subunits of a ribonuclease complex termed the RNA exosome. The RNA exosome mediates both RNA processing and degradation of multiple classes of RNA. This complex is evolutionarily conserved and required for fundamental cellular functions, including rRNA processing. Recently, missense mutations in genes encoding structural subunits of the RNA exosome complex have been linked to a variety of distinct neurological diseases, many of them childhood neuronopathies with at least some cerebellar atrophy. Understanding how these missense mutations lead to the disparate clinical presentations that have been reported for this class of diseases necessitates investigation of how these specific changes alter cell-specific RNA exosome function. Although the RNA exosome complex is routinely referred to as ubiquitously expressed, little is known about the tissue- or cell-specific expression of the RNA exosome complex or any individual subunit. Here, we leverage publicly available RNA-sequencing data to analyze RNA exosome subunit transcript levels in healthy human tissues, focusing on those tissues that are impacted in exosomopathy patients described in clinical reports. This analysis provides evidence to support the characterization of the RNA exosome as ubiquitously expressed with transcript levels for the individual subunits that vary in different tissues. However, the cerebellar hemisphere and cerebellum have high levels of nearly all RNA exosome subunit transcripts. These findings could suggest that the cerebellum has a high requirement for RNA exosome function and potentially explain why cerebellar pathology is common in RNA exosomopathies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3