Abstract
AbstractPARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. Here we show that PARP14 is dual function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates. In particular, we show that the PARP14 macrodomain 1 is an active ADP-ribosyl hydrolase. We also demonstrate hydrolytic activity for the first macrodomain of PARP9. We reveal that expression of a PARP14 mutant with the inactivated macrodomain 1 results in a dramatic increase in mono(ADP-ribosyl)ation of proteins in human cells, including PARP14 itself and antiviral PARP13. Moreover, we demonstrate that the closely related hydrolytically active macrodomain of SARS2 Nsp3, Mac1, efficiently reverses PARP14 ADP-ribosylationin vitroand in cells, supporting the evolution of viral macrodomains to counteract PARP14-mediated antiviral response.TeaserPARP14 is an antiviral PARP that combines ADP-ribosylation writer, reader and eraser functions in one polypeptide.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献