Microplastics may reduce the efficiency of the biological carbon pump by decreasing the settling velocity and carbon content of marine snow

Author:

Roberts CordeliaORCID,Flintrop Clara M.ORCID,Khachikyan Alexander,Milucka JanaORCID,Munn Colin B.ORCID,Iversen Morten H.ORCID

Abstract

AbstractPlastics are pervasive in marine ecosystems and ubiquitous in both shallow and deep oceans. Microfibers, amongst other microscopic plastics, accumulate in deep sea sediments at concentrations up to four orders of magnitude higher than in surface waters. This is at odds with the fact that most microfibers are positively buoyant; therefore, it is hypothesized that settling aggregates are vectors for downward transport of microfibers in the ocean. However, little is known about the impact of microfibers on carbon export. We formed diatom aggregates with differing concentrations of microfibers using roller tanks and observed that microfiber addition stimulated aggregate formation, but decreased their structural cohesion and caused them to break apart more readily, resulting in smaller average sizes. Incorporation of positively buoyant microfibers into settling aggregates reduced their size-specific sinking velocities proportional to the microfiber concentration. Slower sinking may extend aggregate retention time in the upper ocean, thereby increasing the time available for organic matter remineralization in the upper water column. Here, we show that microfiber concentrations typical of those in the English Channel and Atlantic Ocean decrease potential export flux by 15-50%. Present day microfiber concentrations in surface waters may therefore be substantially reducing the efficiency of the biological carbon pump relative to the pre-plastic era.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3