NeuronalNdst1depletion accelerates prion protein clearance and slows neurodegeneration in prion infection

Author:

Aguilar-Calvo Patricia,Malik Adela,Sandoval Daniel R.,Barback Christopher,Orrù Christina D.,Standke Heidi G.,Thomas Olivia,Dwyer Chrissa A.,Pizzo Donald P.,Bapat Jaidev,Soldau Katrin,Ogawa Ryotaro,Riley Mckenzie B.,Nilsson K. Peter R.,Kraus Allison,Caughey Byron,Iliff Jeffrey J.,Vera David,Esko Jeffrey D.ORCID,Sigurdson Christina J.ORCID

Abstract

AbstractSelect prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a major extracellular matrix component. HS facilitates fibril formationin vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for HS accelerating prion conversionin vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase, N-sulfotransferase), from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prion strains. Live PET imaging revealed rapid clearance of prion protein monomers into the CSF in mice expressing unsulfated HS, further suggesting that HS sulfate groups hinder transit of extracellular prion monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme target to facilitate aggregate clearance.Author summaryPrions cause a rapidly progressive neurologic disease and death with no curative treatment available. Prion aggregates accumulate exponentially in the brain in affected individuals triggering neuronal loss and neuroinflammation. Yet the additional molecules that facilitate aggregation are largely unknown, and their identification may lead to new therapeutic targets. We have found that prions in the brain preferentially bind to a highly sulfated endogenous polysaccharide, known as heparan sulfate (HS). Here we use genetically modified mice that express poorly sulfated neuron-derived HS, and infect mice with different prions strains. We find that the mice infected with a plaque-forming prion strain show a prolonged survival and fewer plaques compared to the controls. We also found that the prion protein was efficiently transported in the interstitial fluid in mice having poorly sulfated HS, suggesting that the prion protein is more readily cleared from the brain. Our study provides insight into how HS retains prion aggregates in the brain to accelerate disease and indicates the specific HS biosynthetic enzymes to target for enhancing protein clearance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3