Blockade of IKK signaling induces RIPK1-independent apoptosis in human cells

Author:

Nataraj Neha M.ORCID,Herrmann Beatrice,Shin SunnyORCID,Brodsky Igor E.ORCID

Abstract

ABSTRACTRegulated cell death in response to microbial infection plays an important role in immune defense and is triggered by pathogen disruption of essential cellular pathways. Gramnegative bacterial pathogens in theYersiniagenus disrupt NF-κB signaling via translocated effectors injected by a type III secretion system (T3SS), thereby preventing induction of cytokine production and antimicrobial defense. In murine models of infection,Yersiniablockade of NF-κB signaling triggers cell-extrinsic apoptosis through Receptor Interacting Serine-Threonine Protein Kinase 1 (RIPK1) and caspase-8, which is required for bacterial clearance and host survival. Unexpectedly, we find that human macrophages undergo apoptosis independently of RIPK1 in response toYersiniaor chemical blockade of IKKα/β. Instead, IKK blockade led to decreased cFLIP expression, and overexpression of cFLIP contributed to protection from IKK blockade-induced apoptosis in human macrophages. Importantly, IKK blockade also induces RIPK1 kinase-independent apoptosis in human T cells and human pancreatic cells. Altogether, our data indicate that, in contrast to murine cells, blockade of IKK activity in human cells triggers a distinct apoptosis pathway that is independent of RIPK1. These findings have implications for the contribution of RIPK1 to cell death in humans and the efficacy of RIPK1 inhibition in human diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3