Groundwater redox dynamics across the terrestrial-aquatic interface of Lake Erie coastal ecosystems

Author:

Machado-Silva FaustoORCID,Weintraub Michael,Ward Nicholas,Doro Kennedy O.,Regier Peter J.,Ehosioke Solomon,Thomas Shan Pushpajom,Peixoto Roberta B.,Sandoval Leticia,Forbrich Inke,Kemner Kenneth M.,O’Loughlin Edward J.,Setten Lucie,Spanbauer Trisha,Bridgeman Thomas B.,O’Meara Teri,Rod Kenton A.,Patel Kaizad,McDowell Nate G.,Bond-Lamberty Ben P.,Megonigal J. Patrick,Rich Rich L.,Bailey Vanessa L

Abstract

ABSTRACTGroundwater biogeochemistry in coastal areas is spatially and temporally dynamic because fluctuations in groundwater level may cause alternate redox between distinct hydrological conditions. Recent studies have proposed connections between biogeochemistry and large-scale hydrological processes, specifically focusing on the role of redox-active compounds in changing the oxidation state during flooding and draining events. While water saturation generally results in a shift of redox-active compounds from electron donors to acceptors, the specific mechanisms underlying the transition of groundwater between oxidizing and reducing conditions in response to water level fluctuations are uncertain. To determine the effects of groundwater levels on redox dynamics, we monitored groundwater redox potential across the terrestrial-aquatic interface in Lake Erie coastal areas throughout the high and low-water seasons. In contrast to previously observed responses to flooding in soils, our results revealed patterns of oxidizing redox potentials during high-water and reducing during low-water periods. Furthermore, short-term fluctuations in water table levels significantly impacted the redox potential of groundwater when dissolved oxygen increased, and redox dynamics displayed voltage hysteresis in most events. Based on these findings, we propose that for improved predictions of microbial functions and biogeochemical cycles, redox-informed models should incorporate the antagonistic changes in groundwater redox balance compared to soils and consider the time lags in redox fluctuations.Graphical AbstractConceptual diagram of groundwater redox fluctuations in coastal ecosystems. Large redox fluctuations are derived by dissolved oxygen inputs and smaller more frequent redox fluctuations are led by redox sensitive species leaching from topsoil.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3