High-Intensity Interval Training Attenuates Impairment in Regulatory Protein Machinery of Mitochondrial Quality Control in Skeletal Muscle of Diet-Induced Obese Mice

Author:

Tincknell James B.ORCID,Kugler BenjaminORCID,Spicuzza Haley,Yan HuiminORCID,You TongjianORCID,Zou KaiORCID

Abstract

ABSTRACTMitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of HIIT on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were randomly assigned to a low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD+HIIT) groups and remained on HFD for another 10 weeks (n=9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration and regulatory protein markers of mitochondrial quality control processes were determined by immunoblots. Ten weeks of HIIT enhanced ADP-stimulated mitochondrial respiration in diet-induced obese mice (P < 0.05) but did not improve whole-body insulin sensitivity. Importantly, the ratio of Drp1(Ser616) over Drp1(Ser637) phosphorylation, an indicator of mitochondrial fission, was attenuated in HFD-HIIT compared to HFD (−35.7%, P < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in HFD group than LFD group (−35.1%, P < 0.05), however, such reduction was disappeared in HFD+HIIT group. In addition, LC3B II/I ratio was higher in HFD than LFD group (15.5%, P < 0.05) but was ameliorated in HFD+HIIT group (−29.9%, P < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 activity and p62/LC3B-mediated regulatory machinery of autophagy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3