Catalytic bias and redox-driven inactivation of ancestral FeFe hydrogenases from group B2

Author:

Fasano AndreaORCID,Bailly Aurore,Wozniak Jeremy,Fourmond VincentORCID,Léger ChristopheORCID

Abstract

AbstractThe biodiversity of hydrogenases, the enzymes that oxidize and produce H2, is only just beginning to be explored. Here we use direct electrochemistry to characterize two enzymes from a subgroup of ancestral FeFe hydrogenases, defined by the presence of three adjacent cysteine residues near the active site: the third FeFe hydrogenase fromClostridium pasteurianum(CpIII) and the second fromMegasphaera elsdenii(MeII). To examine the functional role of the unusual TSCCCP motif, which defines the group B2 and is replaced with TSCCP in group A hydrogenases, we also produced a CpIII variant where the supernumerary cysteine is deleted. CpIII and MeII inactivate under oxidative conditions in a manner that is distinct from all other previously characterized hydrogenases from group A. Our results suggest that the supernumerary cysteine allows the previously observed sulfide-independent formation of the Hinact state in these enzymes. We also evidence a second reversible, oxidative inactivation process. Because of their inactivation under oxidative conditions, these enzymes are inefficient H2oxidation catalysts, but their active site itself is not tuned to make them more active in one particular direction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3