Computational model of neuronal recruitment during ICMS for restoring somatosensation in the human somatosensory cortex

Author:

Kudela Pawel,Fifer Matthew SORCID,Osborn Luke EORCID,McMullen David PORCID,Celnik Pablo A,Cantarero Gabriela L,Tenore Francesco V,Anderson William S

Abstract

AbstractObjectiveIntuitively providing touch feedback from artificial hands to users with sensory loss remains a challenge. Although localized fingertip sensations can be evoked via intracortical microstimulation (ICMS), feedback is generally optimized using psychometric tasks rather than mimicking the cortical response to touch.ApproachWe created an anatomically-informed and participant-specific model of the human somatosensory cortex (S1) region with an implanted microelectrode array (MEA). We performed simultaneous stimulation-and-recording from the study participant S1 region to characterize cortical responses elicited by single ICMS pulses. Pulses were delivered to a set of pre-selected electrodes mapped to tactile receptive fields. We next performed a 2D (i.e., in the plane of the MEA probe tips) current source density (CSD) analysis of recorded cortical responses to inform cortical network model parameters on how ICMS activates neurons and lateral synaptic connections in the area of the S1 sampled by MEA electrodes. Using information from planar CSD profiles obtained from ground truth data, we reconstructed lateral connections in the S1 model needed to produce the desired responses to single ICMS pulses. The effect of multiple ICMS was then simulated in the biologically realistic cortical model and the results were validated against ground truth cortical responses from the study participant.Main resultsA high-resolution cortical network model, calibrated to produce the known cortical responses to single ICMS pulses delivered to individual electrodes, predicted with a reasonable accuracy the cortical response to ICMS pulses delivered simultaneously to multiple electrodes.SignificanceThese preliminary results suggest that high-resolution biologically realistic cortical network models can potentially be reliable predictors of cortical response to a given pattern of ICMS presentations and therefore useful in designing biomimetic stimulation patterns.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3