Interleukin-27-induced HIV-resistant dendritic cells suppress reveres transcription following virus entry in an SPTBN1, Autophagy, and YB-1 independent manner

Author:

Imamichi Tomozumi,Chen Qian,Sowrirajan Bharatwaj,Yang Jun,Laverdure Sylvain,Mele Anthony R.,Watkins Catherine,Adelsberger Joseph W.,Higgins Jeanette,Sui Hongyan

Abstract

AbstractInterleukin (IL)-27, a member of the IL-12 family of cytokines, induces human immunodeficiency virus (HIV)-resistant monocyte-derived macrophages and T cells. This resistance is mediated via the downregulation of spectrin beta, non-erythrocytic 1 (SPTBN1), induction of autophagy, or suppression of the acetylation of Y-box binding protein-1 (YB-1); however, the role of IL-27 administration during the induction of immature monocyte-derived dendritic cells (iDC) is poorly investigated. In the current study, we investigated the function of IL-27-induced iDC (27DC) on HIV infection. 27DC inhibited HIV infection by 95 ± 3 % without significant changes in the expression of CD4, CCR5, and SPTBN1 expression, autophagy induction and acetylation of YB-1 compared to iDC. An HIV proviral DNA copy number assay displayed that 27DC suppressed reverse transcriptase (RT) reaction without influencing the virus entry. A DNA microarray analysis was performed to identify the differentially expressed genes between 27DC and iDC. Compared to iDC, 51 genes were differentially expressed in 27DC, with more than 3-fold changes in four independent donors. Cross-reference analysis with the reported 2,214 HIV regulatory host genes identified nine genes as potential interests: Ankyrin repeat domain 22, Guanylate binding protein (GBP)-1, -2, -4, -5, Stabilin 1, Serpin family G member 1 (SERPING1), Interferon alpha inducible protein 6, and Interferon-induced protein with tetratricopeptide repeats 3. A knock-down study using si-RNA failed to determine a key factor associated with the anti-HIV activity due to the induction of robust amounts of off-target effects. Overexpression of each protein in cells had no impact on HIV infection. Thus, we could not define the mechanism of the anti-HIV effect in 27DC. However, our findings indicated that IL-27 differentiates monocytes into HIV-resistant DC, and the inhibitory mechanism differs from IL-27-induced HIV-resistant macrophages and T cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3