Stochastic model of Alzheimer’s Disease progression using two-state Markov chains

Author:

Parks MeaghanORCID

Abstract

AbstractIn 2016, Hao and Friedman developed a deterministic model of Alzheimer’s disease progression using a system of partial differential equations. This model describes the general behavior of the disease, however, it does not incorporate the molecular and cellular stochasticity intrinsic to the underlying disease processes. Here we extend the Hao and Friedman model by modeling each event in disease progression as a stochastic Markov process. This model identifies stochasticity in disease progression, as well as changes to the mean dynamics of key agents. We find that the pace of neuron death increases whereas the production of the two key measures of progression, Tau and Amyloid beta proteins, decelerates when stochasticity is incorporated into the model. These results suggest that the non-constant reactions and time-steps have a significant effect on the overall progression of the disease.

Publisher

Cold Spring Harbor Laboratory

Reference13 articles.

1. “Alzheimer disease.” U.S. National Library of Medicine, https://ghr.nlm.nih.gov/condition/alzheimer-disease#definition.

2. Division of Population Health, National Center for Chronic Disease Prevention and Health Promotion, C. D. C. (2020, October 26). What is alzheimer’s disease? Centers for Disease Control and Prevention. Retrieved April 27, 2022, from https://www.cdc.gov/aging/aginginfo/alzheimers.htm

3. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease

4. Mathematical model on Alzheimer’s disease

5. Stationary distribution of a stochastic Alzheimer's disease model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3