Deep learning, data ramping, and uncertainty estimation for detecting artifacts in large, imbalanced databases of MRI images

Author:

Pizarro Ricardo,Assemlal Haz-Edine,Boopathy Jegathambal Sethu K.,Jubault Thomas,Antel Samson,Arnold Douglas,Shmuel Amir

Abstract

ABSTRACTMagnetic resonance imaging (MRI) is increasingly being used to delineate morphological changes underlying neurological disorders. Successfully detecting these changes depends on the MRI data quality. Unfortunately, image artifacts frequently compromise the MRI utility, making it critical to screen the data. Currently, quality assessment requires visual inspection, a time-consuming process that suffers from inter-rater variability. Automated methods to detect MRI artifacts could improve the efficiency of the process. Such automated methods have achieved high accuracy using small datasets, with balanced proportions of MRI data with and without artifacts. With the current trend towards big data in neuroimaging, there is a need for automated methods that achieve accurate detection in large and imbalanced datasets. Deep learning (DL) is the ideal MRI artifact detection algorithm for large neuroimaging databases. However, the inference generated by DL does not commonly include a measure of uncertainty. Here, we present the first stochastic DL algorithm to generate automated, high-performing MRI artifact detection implemented on a large and imbalanced neuroimaging database. We implemented Monte Carlo dropout in a 3D AlexNet to generate probabilities and epistemic uncertainties. We then developed a method to handle class imbalance, namely data-ramping to transfer the learning by extending the dataset size and the proportion of the artifact-free data instances. We used a 34,800 scans (98% clean) dataset. At baseline, we obtained 89.3% testing accuracy (F1 = 0.230). Following the transfer learning (with data-ramping), we obtained 94.9% testing accuracy (F1 = 0.357) outperforming focal cross-entropy (92.9% testing accuracy, F1 = 0.304) incorporated for comparison at handling class imbalance. By implementing epistemic uncertainties, we improved the testing accuracy to 99.5% (F1 = 0.834), outperforming the results obtained in previous comparable studies. In addition, we estimated aleatoric uncertainties by incorporating random flips to the MRI volumes, and demonstrated that aleatoric uncertainty can be implemented as part of the pipeline. The methods we introduce enhance the efficiency of managing large databases and the exclusion of artifact images from big data analyses.HighlightsWe address the difficulty in automatically detecting artifacts in a large, imbalanced image database.We reproduced high accuracy in detecting artifacts in small balanced datasets.We implemented Monte Carlo (MC) dropout in 3D AlexNet to generate uncertainty metrics.We transfer the learning from a small balanced dataset to a large imbalanced dataset, outperforming focal loss.We outperformed artifact detection in previous studies using comparable large imbalanced datasetsThe user can select an operating point to consider manual inspection vs. artifact detection error.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3