The activation of INF2 by Piezo1/Ca2+is required for mesenchymal to amoeboid transition in confined environments

Author:

Kar Neelakshi,Caruso Alexa P.,Prokopiou Nicos,Logue Jeremy S.

Abstract

AbstractTo invade heterogenous tissues, transformed cells may undergo a mesenchymal to amoeboid transition (MAT). However, the molecular mechanisms regulating this transition are poorly defined. In invasive melanoma cells, we demonstrate that intracellular [Ca2+] increases with the degree of confinement in a Piezo1 dependent fashion. Moreover, Piezo1/Ca2+is found to drive amoeboid and not mesenchymal migration in confined environments. Consistent with a model in which Piezo1 senses tension at the plasma membrane, the percentage of cells using amoeboid migration is further increased in undulating microchannels. Surprisingly, amoeboid migration was not promoted by myosin light chain kinase (MLCK), which is sensitive to intracellular [Ca2+]. Instead, we report that Piezo1/Ca2+activates inverted formin-2 (INF2) to induce widespread actin cytoskeletal remodeling. Strikingly, the activation of INF2 is found to promote de-adhesion, which in turn facilitates MAT. Using micropatterned surfaces, we demonstrate that cells require INF2 to effectively migrate in environments with challenging mechanochemical properties.Summary StatementMigrating melanoma cells are found to rely on the activation of inverted formin-2 (INF2) by Piezo1/Ca2+for mesenchymal to amoeboid transition (MAT) in confined environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3