Extracellular vesicle-mediated trafficking of developmental cues is altered during human brain disease

Author:

Pipicelli FabriziaORCID,Forero AndreaORCID,Moser SylvainORCID,Matteo Francesco Di,Baumann Natalia,Grätz Christian,Pisfil Mariano Gonzalez,Bekjarova Zagorka,Pfaffl Michael W.,Canafoglia LauraORCID,Pütz Benno,Kielkowski Pavel,Cernilogar Filippo M.,Maccarrone Giuseppina,Jabaudon DenisORCID,Giaimo Rossella DiORCID,Cappello SilviaORCID

Abstract

AbstractCellular crosstalk is an essential process influenced by numerous factors including secreted vesicles that transfer nucleic acids, lipids, and proteins between cells. Extracellular vesicles (EVs) have been the center of many studies focusing on neuron-to-neuron communication, but the role of EVs in progenitor-to-neuron and -astrocyte communication and whether EVs display cell-type-specific features for cellular crosstalk during neurogenesis is unknown. Here, using human-derived cerebral organoids, neural progenitors, neurons, and astrocytes, we found that many proteins coded by genes associated with neurodevelopmental disorders are transported via EVs. Thus, we characterized the protein content of EVs and showed their cell type-specific dynamics and function during brain development. Changes in the physiological crosstalk between cells can lead to neurodevelopmental disorders. EVs from patients with epilepsy were found altered in composition and function. Alterations in the intracellular and extracellular compartments highlighted a clear dysregulation of protein trafficking. This study sheds new light on the biology of EVs during brain development and neurodevelopmental disorders.Abstract FigureGraphical abstract(left) EV uptake mechanism varies depending on the receiving cell type; NPCs transport neuron EVs (nEVs) and astrocyte EVs (aEVs) to the nucleus, astrocytes localize progenitor EVs (pEVs) to the cytoplasm, and neurons retain pEVs and aEVs along the plasma membrane. (right) Cerebral organoids (COs) from progressive Myoclonus Epilepsy Type I (EPM1) patients release EVs lacking key proteins in neurodevelopment and proteins necessary for EV biogenesis and release. Illustration created using BioRender.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3