Biophysical neural adaptation mechanisms enable deep learning models to capture dynamic retinal computation

Author:

Idrees SaadORCID,Rieke FredORCID,Field Greg D.ORCID,Zylberberg JoelORCID

Abstract

Neural adaptation is a universal feature of neural systems that modulates the output based on input conditions, enabling efficient encoding of sensory inputs without saturation or loss. In contrast, conventional artificial neural networks (ANNs) lack these adaptational mechanisms, resulting in inaccurate neural predictions under changing input conditions. Can embedding neural adaptive mechanisms in ANNs improve their performance and generate biologically-plausible models? To address this question, we introduce a new type of convolutional neural network (CNN) layer incorporating photoreceptor biophysics and adaptation mechanisms to model light-dependent photoreceptor sensitivity and kinetics. Under changing input light conditions, CNNs that include the new photoreceptor layer integrated as a front-end perform better than conventional CNN models at predicting: (1) monkey and rat retinal ganglion cell responses; and (2) context-dependent changes in neural sensitivity. This study demonstrates the potential of embedding neural adaptive mechanisms in deep learning models, enabling them to adapt dynamically to evolving inputs.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Abadi, M. , Barham, P. , Chen, J. , Chen, Z. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Irving, G. , Isard, M. , Kudlur, M. , Levenberg, J. , Monga, R. , Moore, S. , Murray, D. G. , Steiner, B. , Tucker, P. , Vasudevan, V. , Warden, P. , Wicke, M. , Yu, Y. , and Zheng, X. Tensorflow: A system for large-scale machine learning. 2016.

2. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

3. Angueyra, J. M. , Baudin, J. , Schwartz, G. W. , and Rieke, F. Multiple time scales of adaptation allow cones to encode the inputs created by visual exploration of natural scenes. bioRxiv, page2021.02.13.431101, 2021.

4. Ba, J. L. , Kiros, J. R. , and Hinton, G. E. Layer Normalization. 2016.

5. Transmission from photoreceptors to ganglion cells in turtle retina

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3