Waste not, want not: Revisiting the analysis that called into question the practice of rarefaction

Author:

Schloss Patrick D.ORCID

Abstract

AbstractIn 2014, McMurdie and Holmes published the provocatively titled, “Waste not, want not: why rarefying microbiome data is inadmissible”. The claims of their study have significantly altered how microbiome researchers control for the unavoidable uneven sequencing depths that are inherent in modern 16S rRNA gene sequencing. Confusion over the distinction between the definitions of rarefying and rarefaction continues to cloud the interpretation of their results. More importantly, the authors made a variety of choices in designing and analyzing their simulations that were potentially problematic. I identified 11 factors that could have compromised the results of the original study. I reproduced the original simulation results and assessed the impact of those 11 factors on the underlying conclusion that rarefying data is inadmissible. Throughout, the design of the original study made choices that caused rarefying and rarefaction to appear to perform worse than they truly did. Most important were the approaches used to assess ecological distances, the removal of samples with low sequencing depth, and not accounting for conditions where sequencing effort is confounded with treatment group. Although the original study criticized rarefying for the arbitrary removal of valid data, repeatedly rarefying data many times (i.e., rarefaction) incorporates all the data. In contrast, it is the removal of rare taxa that would appear to remove valid data. Overall, I show that rarefaction is the most robust approach to control for uneven sequencing effort when considered across a variety of alpha and beta diversity metrics.ImportanceOver the past 10 years, the best method for normalizing the sequencing depth of samples characterized by 16S rRNA gene sequencing has been contentious. An often cited paper by McMurdie and Holmes forcefully argued that rarefying the number of sequence counts was “inadmissible” and should not be employed. However, I identified a number of problems with the design of their simulations and analysis that could compromise their results. In fact, when I reproduced and expanded upon their analysis, it was clear that rarefaction was actually the most robust approach for controlling for uneven sequencing effort across samples. Rarefaction limits the rate of falsely detecting and rejecting differences between treatment groups. Far from being “inadmissible”, rarefaction is a valuable tool for analyzing microbiome sequence data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3