Multi-night naturalistic cortico-basal recordings reveal mechanisms of NREM slow wave suppression and spontaneous awakenings in Parkinson’s disease

Author:

Anjum Md FahimORCID,Smyth ClayORCID,Dijk Derk-JanORCID,Starr Philip,Denison TimothyORCID,Little SimonORCID

Abstract

ABSTRACTBackgroundSleep disturbance is a prevalent and highly disabling comorbidity in individuals with Parkinson’s disease (PD) that leads to worsening of daytime symptoms, accelerated disease progression and reduced quality of life.ObjectivesWe aimed to investigate changes in sleep neurophysiology in PD particularly during non-rapid eye movement (NREM) sleep, both in the presence and absence of deep brain stimulation (DBS).MethodsMulti-night (n=58) intracranial recordings were performed at-home, from chronic electrocorticography and subcortical electrodes, with sensing-enabled DBS pulse generators, paired with portable polysomnography. Four people with PD and one person with cervical dystonia were evaluated to determine the neural structures, signals and connections modulated during NREM sleep and prior to spontaneous awakenings. Recordings were performed both ON and OFF DBS in the presence of conventional dopaminergic replacement medications.ResultsWe demonstrate an increase in cortico-basal slow wave activity in delta (1-4 Hz) and a decrease in beta (13-31 Hz) during NREM (N2 and N3) versus wakefulness in PD. Cortical-subcortical coherence was also found to be higher in the delta range and lower in the beta range during NREM versus wakefulness. DBS stimulation resulted in a further elevation in cortical delta and a decrease in alpha (8-13 Hz) and low beta (13-15 Hz) power compared to the OFF stimulation state. During NREM sleep, we observed a strong inverse interaction between subcortical beta and cortical slow wave activity and found that subcortical beta increases prior to spontaneous awakenings.ConclusionsChronic, multi-night recordings in PD reveal opposing sleep stage specific modulations of cortico-basal slow wave activity in delta and subcortical beta power and connectivity in NREM, effects that are enhanced in the presence of DBS. Within NREM specifically, subcortical beta and cortical delta are strongly inversely correlated and subcortical beta power is found to increase prior to and predict spontaneous awakenings. We find that DBS therapy appears to improve sleep in PD partially through direct modulation of cortico-basal beta and delta oscillations. Our findings help elucidate a contributory mechanism responsible for sleep disturbances in PD and highlight potential biomarkers for future precision neuromodulation therapies targeting sleep and spontaneous awakenings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3