Ketamine rescues anhedonia by cell-type and input specific adaptations in the Nucleus Accumbens

Author:

Lucantonio Federica,Li Shuwen,Lu Jaden,Roeglin Jacob,Bontempi Leonardo,Shields Brenda C.,Zarate Carlos A.,Tadross Michael R.,Pignatelli Marco

Abstract

AbstractKetamine’s role in providing a rapid and sustained antidepressant response, particularly for patients unresponsive to conventional treatments, is increasingly recognized. A core symptom of depression, anhedonia, or the loss of enjoyment or interest in previously pleasurable activities, is known to be significantly alleviated by ketamine. While several hypotheses have been proposed regarding the mechanisms by which ketamine alleviates anhedonia, the specific circuits and synaptic changes responsible for its sustained therapeutic effects are not yet understood. Here, we show that the nucleus accumbens (NAc), a major hub of the reward circuitry, is essential for ketamine’s effect in rescuing anhedonia in mice subjected to chronic stress, a critical risk factor in the genesis of depression in humans. Specifically, a single exposure to ketamine rescues stress-induced decreased strength of excitatory synapses on NAc D1 dopamine receptor-expressing medium spiny neurons (D1-MSNs). By using a novel cell-specific pharmacology method, we demonstrate that this cell-type specific neuroadaptation is necessary for the sustained therapeutic effects of ketamine. To test for causal sufficiency, we artificially mimicked ketamine-induced increase in excitatory strength on D1-MSNs and found that this recapitulates the behavioral amelioration induced by ketamine. Finally, to determine the presynaptic origin of the relevant glutamatergic inputs for ketamine-elicited synaptic and behavioral effects, we used a combination of opto- and chemogenetics. We found that ketamine rescues stress-induced reduction in excitatory strength at medial prefrontal cortex and ventral hippocampus inputs to NAc D1-MSNs. Chemogenetically preventing ketamine-evoked plasticity at those unique inputs to the NAc reveals a ketamine-operated input-specific control of hedonic behavior. These results establish that ketamine rescues stress-induced anhedonia via cell-type-specific adaptations as well as information integration in the NAc via discrete excitatory synapses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3