Analysis of Protein-Protein Interactions networks and cross-species transfer learning comparison for seven organisms

Author:

Martins Yasmmin CORCID

Abstract

AbstractMotivationProtein-protein interactions (PPIs) can be used for a plenty of applications like inferring protein functions or even helping the drug discovery process. For human specie, there is a lot of validated information and functional annotations for the proteins in its interactome. In other species, the known interactome is much smaller compared with human and there are many proteins with few or no annotations by specialists. Understanding the interactome of other species helps to trace evolutionary characteristics, compare important biological processes and also build interactomes for new organisms according to other organisms more related with it instead of relying just to the human interactome.ResultsIn this study, we evaluate the performance of PredPrIn workflow in predicting interactome for seven organisms in terms of scalability and precision showing that PredPrIn gets over than 70% of precision and it takes less than three days even on the largest datasets. We made a transfer learning analysis predicting an organism interactome from each other organism, we then showed an implication regarding to their evolutionary relation in the number of ortholog proteins shared between these organisms. We also present an analysis of functional enrichment showing the proportion of shared annotations between positive and false interactions predicted and extraction of topological features of each organism interactome such as proteins acting as hubs and bridge between modules. From each organism, one of the most frequent biological processes was selected and the proteins and pairs present in it were compared in terms of quantity in the interactome available in HINT database for that organism and the one predicted by PredPrIn. In this comparison we showed that we covered those proteins and pairs covered in HINT and also enriched these processes for almost all organisms.ConclusionsIn this work, we have proved the efficiency of PredPrIn workflow for protein interaction prediction for seven different organisms using scalability, performance and transfer learning analyses. We have also made cross-species interactome comparisons showing the most frequent biological processes for each organism as well as the topological features of each organism interactome showing the consistency with hypothesis about biological networks. Finally, we described the enrichment made by PredPrIn in selected biological processes showing that its prediction was important to enhance information about these organisms interactomes.

Publisher

Cold Spring Harbor Laboratory

Reference21 articles.

1. Prediction of protein–protein interactions by evidence combining methods;International journal of molecular sciences,2016

2. Predicting protein–protein interactions in the context of protein evolution;Molecular BioSystems,2010

3. Predicted networks of protein-protein interactions in stegodyphus mimosarum by cross-species comparisons;BMC genomics,2017

4. Hint: High-quality protein interactomes and their applications in understanding human disease;BMC systems biology,2012

5. String v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets;Nucleic acids research,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3