Small allelic variants are a source of ancestral bias in structural variant breakpoint placement

Author:

Audano Peter A.ORCID,Beck Christine R.ORCID

Abstract

AbstractHigh-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥ 50 bp) has improved to near basepair precision. Despite these advances, many SVs in unique regions of the genome are subject to systematic bias that affects breakpoint location. This ambiguity leads to less accurate variant comparisons across samples, and it obscures true breakpoint features needed for mechanistic inferences. To understand why SVs are not consistently placed, we re-analyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identified variable breakpoints for 882 SV insertions and 180 SV deletions not anchored in tandem repeats (TRs) or segmental duplications (SDs). While this is unexpectedly high for genome assemblies in unique loci, we find read-based callsets from the same sequencing data yielded 1,566 insertions and 986 deletions with inconsistent breakpoints also not anchored in TRs or SDs. When we investigated causes for breakpoint inaccuracy, we found sequence and assembly errors had minimal impact, but we observed a strong effect of ancestry. We confirmed that polymorphic mismatches and small indels are enriched at shifted breakpoints and that these polymorphisms are generally lost when breakpoints shift. Long tracts of homology, such as SVs mediated by transposable elements, increase the likelihood of imprecise SV calls and the distance they are shifted. Tandem Duplication (TD) breakpoints are the most heavily affected SV class with 14% of TDs placed at different locations across haplotypes. While graph genome methods normalize SV calls across many samples, the resulting breakpoints are sometimes incorrect, highlighting a need to tune graph methods for breakpoint accuracy. The breakpoint inconsistencies we characterize collectively affect ∼5% of the SVs called in a human genome and underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoint placement, and increase the value of callsets for investigating mutational processes.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3