Cranes soar on thermal updrafts behind cold fronts as they migrate across the sea

Author:

Pekarsky SashaORCID,Shohami DavidORCID,Horvitz NirORCID,Bowie Rauri C. K.ORCID,Kamath Pauline L.ORCID,Markin Yuri,Getz Wayne M.ORCID,Nathan RanORCID

Abstract

AbstractThermal soaring conditions above the sea have long been assumed absent or too weak for terrestrial migrating birds, forcing large obligate soarers to take long detours and avoid sea crossing, and facultative soarers to cross exclusively by costly flapping flight. Thus, while atmospheric convection does develop at sea and is utilized by some seabirds, it has been largely ignored in avian migration research. Here we provide direct evidence for routine thermal soaring over open sea in the common crane, the heaviest facultative soarer known among terrestrial migrating birds. Using high-resolution biologging from 44 cranes tracked across their transcontinental migration over 4 years, we show that soaring characteristics and performance were no different over sea than over land in mid-latitudes. Sea-soaring occurred predominantly in autumn when large water-air temperature difference followed mid-latitude cyclones. Our findings challenge a fundamental paradigm in avian migration research and suggest that large soaring migrants avoid sea crossing not due to absence or weakness of thermals but due to their uncertainty and the costs of prolonged flapping. Marine cold air outbreaks, imperative to the global energy budget and climate system, may also be important for bird migration, calling for more multidisciplinary research across biological and atmospheric sciences.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cranes soar on thermal updrafts behind cold fronts as they migrate across the sea;Proceedings of the Royal Society B: Biological Sciences;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3