Author:
Lebovich Matthew,Andrews Lauren B.
Abstract
AbstractEngineered microorganisms such as the probiotic strainEscherichia coliNissle 1917 (EcN) offer a strategy to sense and modulate the concentration of metabolites or therapeutics in the gastrointestinal tract. Here, we present an approach to regulate production of the depression-associated metabolite gamma-aminobutyric acid (GABA) in EcN using genetic circuits that implement negative feedback. We engineered EcN to produce GABA by overexpressing glutamate decarboxylase (GadB) fromE. coliand applied an intracellular GABA biosensor to identify growth conditions that improve GABA biosynthesis. We next employed characterized genetically-encoded NOT gates to construct genetic circuits with layered feedback to control the rate of GABA biosynthesis and the concentration of GABA produced. Looking ahead, this approach may be utilized to design feedback control of microbial metabolite biosynthesis to achieve designable smart microbes that act as living therapeutics.
Publisher
Cold Spring Harbor Laboratory