In search of disentanglement in tandem mass spectrometry datasets

Author:

Abram Krzysztof Jan,McCloskey DouglasORCID

Abstract

AbstractGenerative modeling and representation learning of tandem mass spectrometry data aim to learn an interpretable and instrument-agnostic digital representation of metabolites directly from MS/MS spectra. Interpretable and instrument-agnostic digital representations would facilitate comparisons of MS/MS spectra between instrument vendors and enable better and more accurate queries of large MS/MS spectra databases for metabolite identification. In this study, we apply generative modeling and representation learning using variational autoencoders to understand the extent to which tandem mass spectra can be disentangled into its factors of generation (e.g., collision energy, ionization mode, instrument type, etc.) with minimal prior knowledge of the factors. We find that variational autoencoders can disentangle tandem mass spectra data with the proper choice of hyperparameters into meaningful latent representations aligned with known factors of variation. We develop a two-step approach to facilitate the selection of models that are disentangled which could be applied to other complex and high-dimensional data sets.

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. GNPS - Analyze, Connect, and Network with Your Mass Spectrometry Data Available online: https://gnps.ucsd.edu/Prote-oSAFe/static/gnps-splash.jsp (accessed on 31 January 2022).

2. HMDB: the Human Metabolome Database

3. MassBank of North America Available online: https://mona.fiehnlab.ucdavis.edu/ (accessed on 24 January 2022).

4. Searching molecular structure databases with tandem mass spectra using CSI:FingerID

5. MassGenie: A Transformer-Based Deep Learning Method for Identifying Small Molecules from Their Mass Spectra

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3