Select EZH2 inhibitors enhance the viral mimicry effects of DNMT inhibition through a mechanism involving calcium-calcineurin-NFAT signaling

Author:

Chomiak Alison A.,Tiedemann Rochelle L.,Liu Yanqing,Kong Xiangqian,Cui Ying,Thurlow Kate,Cornett Evan M.,Topper Michael J.,Baylin Stephen B.,Rothbart Scott B.

Abstract

AbstractDNA methyltransferase (DNMT) inhibitors are FDA-approved for various hematological malignancies but have limited efficacy in solid tumors. DNA hypomethylation with these drugs is associated with elevated lysine 27 tri-methylation on histone H3 (H3K27me3). We hypothesized that this EZH2-dependent repressive mark limits the full potential of DNMT inhibition. Here, we show in cell line and tumoroid models of colorectal cancer, that low-dose DNMT inhibition sensitizes cells to selective EZH2 inhibitors that have limited single agent toxicity, and that EZH2 inhibition enhances DNMT inhibitor-driven molecular and therapeutic effects. Through integrative epigenomic analyses, we reveal that DNMT inhibition induces H3K27me3 accumulation at genomic regions poised with EZH2. Unexpectedly, combined treatment alters the epigenome landscape to promote transcriptional upregulation of the calcium-calcineurin-NFAT signaling pathway. Blocking this pathway limits the transcriptional activating effects of the drug combination, including expression of transposable elements and innate immune response genes within a viral defense pathway. Consistently, we demonstrate positive correlations between DNMT inhibitor- and innate immune response-associated transcription profiles and calcium signal activation in primary human colon cancer specimens. Collectively, our study demonstrates that compensatory EZH2 activity following DNA hypomethylation presents a barrier to the therapeutic action of DNMT inhibition in colon cancer, reveals a new application of EZH2 inhibitors beyond cancers associated with PRC2 hyperactivity, and links calcium-calcineurin-NFAT signaling to epigenetic therapy-induced viral mimicry.HighlightsSelect EZH2 inhibitors enhance the transcriptional activating and antiproliferative effects of DNA hypomethylating agents in colon cancer cells.The mechanism involves blockade of H3K27me3 accumulation in regions of the genome poised for PRC2 activity.DNMT inhibitor + EZH2 inhibitor treatment transcriptionally upregulates calcium-calcineurin- NFAT signaling, and this pathway is necessary for complete induction of viral mimicry and innate immune response pathways.The therapeutic utility of EZH2 inhibitors may be extended beyond cancers with PRC2 hyperactivity in combination regimens with DNMT inhibitors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3