Necessary Role of Acute Ceramide Formation in The Human Microvascular Endothelium During Health and Disease

Author:

SenthilKumar GopikaORCID,Katunaric BoranORCID,Zirgibel Zachary,Lindemer Brian,Jaramillo-Torres Maria J.,Bordas-Murphy Henry,Schulz Mary E.,Pearson Paul J.,Freed Julie K.ORCID

Abstract

ABSTRACTBackgroundElevated plasma ceramides independently predict adverse cardiac events and we have previously shown that exposure to exogenous ceramide induces microvascular endothelial dysfunction in arterioles from otherwise healthy adults (0-1 risk factors for heart disease). However, evidence also suggests that activation of the shear-sensitive, ceramide forming enzyme neutral sphingomyelinase (NSmase) enhances vasoprotective nitric oxide (NO) production. Here we explore a novel hypothesis that acute ceramide formation through NSmase is necessary for maintaining NO signaling within the human microvascular endothelium. We further define the mechanism through which ceramide exerts beneficial effects and discern key mechanistic differences between arterioles from otherwise healthy adults and patients with coronary artery disease (CAD).MethodsHuman arterioles were dissected from otherwise discarded surgical adipose tissue (n=123), and vascular reactivity to flow and C2-ceramide was assessed. Shear-induced NO production was measured in arterioles using fluorescence microscopy. Hydrogen peroxide (H2O2) fluorescence was assessed in isolated human umbilical vein endothelial cells.ResultsInhibition of NSmase in arterioles from otherwise healthy adults induced a switch from NO to H2O2-mediated flow-induced dilation within 30 minutes. In endothelial cells, NSmase inhibition acutely increased H2O2production. Endothelial dysfunction in both models was prevented by treatment with C2-ceramide, S1P, and an agonist of S1P-receptor 1 (S1PR1), while the inhibition of S1P/S1PR1 signaling axis induced endothelial dysfunction. Ceramide increased NO production in arterioles from healthy adults, an effect that was diminished with inhibition of S1P/S1PR1/S1PR3 signaling. In arterioles from patients with CAD, inhibition of NSmase impaired dilation to flow. This effect was not restored with exogenous S1P. Although, inhibition of S1P/S1PR3 signaling impaired normal dilation to flow. Acute ceramide administration to arterioles from patients with CAD also promoted H2O2as opposed to NO production, an effect dependent on S1PR3 signaling.ConclusionThese data suggest that despite key differences in downstream signaling between health and disease, acute NSmase-mediated ceramide formation and its subsequent conversion to S1P is necessary for proper functioning of the human microvascular endothelium. As such, therapeutic strategies that aim to significantly lower ceramide formation may prove detrimental to the microvasculature.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3